
UNIT-4-C

Introduction, Basics of C++ Exception Handling:
Try Throw, Catch, Throwing an Exception,

Catching an Exception, Rethrowing an
Exception, Exception specifications, Processing

Unexpected Exceptions, Stack Unwinding,
Constructors, Destructors and Exception

Handling, Exceptions and Inheritance.

Exception Handling

• Exceptions are the run time anomalies or unusual conditions that a
program may encounter while executing.

• Exception handling is not a part of original C++.
• It provides a type safe & an integrated approach for coping with unusual

predictable problems that arise while executing a program.
• This mechanism is based on 3 keywords namely:
• try
• Throw
• Catch
• Try :- is used to preface a block of statements (surrounded by braces)

which may generate exceptions. Its called a try block.
• Throw :- when the exception is detected ,it is thrown using a throw

statement in try block.
• Catch :- this keyword ‘catches’ the exception ‘thrown’ by the throw

statement in the try block and handles the exception appropriately.

Try block

 detect and throw an
exception

Catch block
Catch and handle

the exception

Exception and Exception Handlers

Exception Handling –

It is a mechanism to detect and report an ‘exceptional circumstance” so

that appropriate action can be taken. It involves the following tasks.

• Find the problem (Hit the exception)

• Inform that an error has occurred (Throw the exception)

• Receive the error information (catch the expression)

• Take corrective action (Handle the exception)

main()

{ int x, y;

 cout << “Enter values of x and y”;

 cin >>x>>y;

 try {

 if (x != 0)

 cout “y/x is =“<<y/x;

 else

 throw(x);

 }

 catch (int i) {

 cout << “Divide by zero exception caught”;

 }

}

Exception and Exception Handlers

try – Block contains sequence of statements which may generate exception.

throw – When an exception is detected, it is thrown using throw statement

catch – It’s a block that catches the exception thrown by throw statement and handles it
appropriately.

catch block immediately follows the try block.

The same exception may be thrown multiple times in the try block.

There may be many different exceptions thrown from the same try block.

There can be multiple catch blocks following the same try block handling

different exceptions thrown.

The same block can handle all possible types of exceptions.

catch(…)

{

 // Statements for processing all exceptions

}

Function invoked by try block throwing exception

Throw point
Function that causes an

exception

Try
Invok es a function that
contains an exception

Catch
Catches and handles the

exception

Invoking function that generates exception

Void divide(int x,int y)
{
if (x != 0)
 cout “y/x is =“<<y/x;
 else
 throw(x);
}

Void main()
{ int x, y;
 cout << “Enter values of x and y”;
 cin >>x>>y;
 try {
 cout<<“try block”
 divide(10,20);
 divide(0,20);
 }
 catch (int i) {
 cout << “Divide by zero exception caught”;
 }
}

Throwing machanism

Throw statement is in one of the following form:

•Throw(exception)

•Throw exception

•Throw //rethrowing an exception

Catching machanism
Catch(type arg)

{

 //statement for managing exceptions

}

Multiple catch statement(one try block)
 void test(int x)
{
 try
 {
 if(x==1) throw x;
 else if(x==0) throw ‘x’;
 else if (x==-1) throw 1.0;
 else cout<<“end of try block”;
 }
 Catch(char c){cout<<“char”; }
 Catch(int m){cout<<“int”; }
 Catch(double d){cout<<“double”; }
 cout<<“end of function”;
}
int main()
{
Cout<“testing multiple catch”;
Cout<<“x==1”;
Test(1);
Cout<<“x==0”;
Test(0);
Cout<<“x==-1”;
Test(-1);
Cout<<“x==2”;
Test(2);}

Output:-
Testing multiole catch
X==1
Int
X==0
Char
X==-1
Double
End of try block
End of function

Catching all exceptions
void test(int x)
{
 try
 {
 if(x==1) throw x;
 if(x==0) throw ‘x’;
 if (x==-1) throw 1.0;
 }
 Catch(…)
{
cout<<“caught an exception”;
}
 void Main()
{
Cout<“testing”;
Test(-1);
Test(0);
Test(1);
}

Output:-

Testing
Caught an exception
Caught an exception
Caught an exception

Rethrowing an exception(throw)
Void divide(int x,int y)
{

try{
if (x != 0)
 cout “y/x is =“<<y/x;
 else
 throw(x);
}
Catch(int)
{ cout<<“catch int inside function”;
 throw;
}

}
Void main()
{
 try

{
 cout<<“try block”
 divide(10,20);
 divide(0,20)
 }
 catch (int) {
 cout << “catch int inside main ”;
 }

}

Output:-
Try block
y/x is=2
catch int inside function
catch int inside main

Specifying exception
• It is possible to throw only certain specified

exceptions. Syntax is:

 Type function(arg-list) throw (type-list)

{

………… //function body

……………

}

 If we wish to prevent a function from throwing any
exception ,we must use:

 throw();

void test(int x) throw(int,double)

{

 if(x==1) throw x;

 else if(x==0) throw ‘x’;

 else if (x==-1) throw 1.0;

 else cout<<“end of function block”;

 }

Output:-testing multiple catch

 end of try catch system

Void main()
T try

 {
 Cout<“testing multiple catch”;
Cout<<“x==0”;
Test(0);
Cout<<“x==1”;
Test(1);
Cout<<“x==-1”;
Test(-1);
Cout<<“x==2”;
Test(2);
}
 Catch(char c){cout<<“char”;}
 Catch(int m){cout<<“int”; }
 Catch(double
d){cout<<“double”;}
 Cout<<“end of try catch
system”

}

Note: Here throwing any other type of exception will cause abnormal program termination

